

Journal of Chromatography A, 799 (1998) 185-205

JOURNAL OF CHROMATOGRAPHY A

# Unified system for the prediction of retention data in gas-liquid chromatography

J.M. Takács

Gas Chromatographic Research Group for Study of Retention Index Systems, Fábián u.27, H-1165 Budapest, Hungary

Received 9 June 1997; received in revised form 30 September 1997; accepted 7 October 1997

## Abstract

A unified system of calculating retention data in advance (data of more than 400 stationary phases between 60–130 [°C] column temperature) has been worked out based on research work of more than four decades and on the results of hundreds of researchers and research teams. The system is suitable for multiplication of horizontal (from a given stationary phase calculating from one column temperature [*T*1] to another [*T*2]) and vertical (on standard column temperature from one stationary phase to another) counting between isothermal circumstances without any limitation. The system can be used in programmed gas–liquid chromatography including double (carrier gas and column temperature and/or special vaporizater) programming. We present a system software with a protocol and some tables to help in its use. Zerolane (hypothetical stationary phase), squalane and OV-101 stationary phases are used as the fundamental stationary phases for precalculation. © 1998 Elsevier Science B.V.

Keywords: Retention indices; Retention prediction; Computer simulation

#### 1. Introduction

The importance of calculation and counting of retention data in advance is well-known. Some aspects of the topic have already been mentioned by James and Martin who invented this method [1].

This method got widespread use and more and more researchers and teams worked on the calculation of retention data in advance [2]. Most of these works can be found in three reviews [3–5] and in a monograph [6]. Related to these observations we paid attention [7,8] to the importance of these methods (Rohrschneider conception [9], McReynolds system [10], etc.).

It should be noted that a specific utilization of

theoretical and practical results of solubility parameters according to Kersten and Poole [11], Pomaville and coworkers [12,13], Sanchez et al. [14], Abraham et al. [15,16], Li et al. [17,18] and Laffort et al. [19,20] are also important sourdes of the precalculation of retention data in gas-liquid chromatography (GLC) including the retention index system [21].

Thanks to these works and researches, specialists paid more attention to this field and a vivid debate resulted [22,23] leading to a lot of development in the increment method [24–26] and perfection of it by introduction of the double environmental factor [27].

Summing up the results and the experiences of the last 45 years in this field we decided to base our paper on the Rohrschneider conception and on the

McReynolds system, also agreeing the theoretical importance of the methods which used solubility parameters. Our decision is based on the knowledge of the dependence of retention index on column temperature, on the easy usage of relationships by computer [3] and the direct availability of the Tekler equation [28] and Tekler's modified equation by Santiuste [29].

Zerolane [36] (hypothetical stationary phase), squalane and OV-101 stationary phases are used as fundamental stationary phases for precalculation.

The retention index system gives some extras to the library resulting from the gas chromatography (GC)-mass spectrometry system perspective.

## 2. Theory

The first step in the elaboration of the system was based on the usage of the quotient equation with the Rohrschneider conception [9] which is based on the first five McReynolds [10] standards: benzene (1), n-butanol (2), 2-pentanone (3), 1-nitropropane (4) and pyridine (5):

$$I_{x}^{\text{st.ph.}}{}_{T_{c}}/I_{x}^{\text{OV-101}}{}_{T_{c}} = \sum_{i=1}^{5} (I_{i}^{\text{st.ph}}/I_{i}^{\text{OV-101}})_{T_{c}} \cdot s_{i}$$
(1)

where: I = isotherm retention index according to Kováts [30] [dimensionless]; x = symbol of substance examined; st.ph. = symbol of stationary phase used; Tc = column temperature [°C]; i = serial number of  $i^{\text{th}}$  McReynolds standard from the first five ones;  $s_i = i^{\text{th}}$  substance specific factor of the compound examined [31] [dimensionless].

It is obvious from the first equation that we must get to know each data of the retention index of the first five McReynolds standard substances used at every column temperature in the interval of column temperature system (between 60–130 [°C]) when we want to count the retention data in advance.

Previously we declared that the substance specific factors ( $s_i$  values) do not depend on the stationary phase used and the column temperature [31]. Poole demonstrated [32] that the substance-specific factors ( $s_i$  values) depend theoretically on individual interactions of the substance examined and standard compound used on squalane stationary phase as follows:

$$f_i = I^{SQ}(i)/I^{SQ}(x) = [I_M(i)/I_M(x)][\pi(i)/\pi(x)]$$
(2)

where:  $f_i$  = quotient of interaction values of  $i^{\text{th}}$  standard compound and the substance examined;  $\pi$  = individual interaction value and  $I_{\text{M}}$  is molecular index contribution [33].

Since the two retention indices in Eq. (2) depend on column temperature and the quality of the substance studied,  $f_i$  depends theoretically on column temperature and the quality of the substance studied, so the substance specific factors depend theoretically on column temperature and the quality of the substance studied. Fortunately, in practice, we can omit the results of these effects but they cause the difference between the theoretical and the measured values in the sum of substance specific factors and so the 0.1–0.5% errors of the precalculation of retention data.

Data calculation of substance specific factors ( $s_i$  values) will be mentioned in Section 3.

Because the connection between retention index and the stationary phase used can be obvious from the definition equation of the retention polarity [33], we are able to make up the following:

$$I_{i,Tc}^{\text{st.ph.}} = \frac{a_{i,1} + a_{i,2}RP^{\text{st.ph.}}(120.0 \,[^{\circ}\text{C}])}{1 + a_{i,3}RP^{\text{st.ph.}}(120.0 \,[^{\circ}\text{C}])}$$
(3)

where: RP=retention polarity [33] [dimensionless] and  $a_{i,1}$ ,  $a_{i,2}$ ,  $a_{i,3}$  are constants of Eq. (3). Retention polarity can be counted on the  $\Delta I$  values of the first five McReynolds standards as follows:

$$RP^{\text{st.ph.}}(Tc) = 20 \sum_{i=1}^{5} \left( \Delta I_i / I_i^{\text{Squalane}} \right)_{Tc}$$
(4)

where: RP = retention polarity [dimensionless] at Tc isotherm column temperature

$$\Delta I_i = I_i^{\text{st.ph.}} - I_i^{Squalane}$$
(5)

Retention polarity depends on the column temperature since the retention indices depend on column temperature. If we are in need of other retention polarity data of other column temperatures, we can count them in the following way:

$$RP^{\text{st.ph.}}(Tc) = \frac{A_{\text{RP}} + B_{\text{RP}}Tc}{1 + C_{\text{RP}}Tc}$$
(6)

where:  $A_{RP}$ ,  $B_{RP}$  and  $C_{RP}$  are constants of Eq. (6).

It should be noted that Santiuste [34] presented very good results for retention polarity at different column temperatures on various stationary phases.

In the following we recognised that the constants of McReynolds standard substances in Eq. (3) depend on the column temperature as follows:

$$a_{i,j} = A_{i,j} + \frac{B_{i,j}}{Tc + C_{i,j}}$$
(7)

where *j* is the serial number of constants (j=1, 2 and 3, respectively) and  $A_{i,j}$ ,  $B_{i,j}$  and  $C_{i,j}$  are constants of Eq. (7). Putting the data of Eq. (7) into Eq. (3), we can see the following:

$$I_{i,Tc}^{\text{st.ph.}} = \frac{A_{i,1} + \frac{B_{i,1}}{Tc + C_{i,1}} + \left(A_{i,2} + \frac{B_{i,2}}{Tc + C_{i,2}}\right) RP^{\text{st.ph.}}(120.0 \ [^{\circ}\text{C}])}{1 + \left(A_{i,3} + \frac{B_{i,3}}{Tc + C_{i,3}}\right) RP^{\text{st.ph.}}(120.0 \ [^{\circ}\text{C}])}$$
(8)

The system standardised onto the required column temperature is ready to count retention index and other GLC parameters in advance, but calculation of other data (specific retention volume, activity coefficient, etc.) can be done only by introducing extra equations. There are some of these in Eqs. (9)-(19) as follows:

$$\ln \left[Q\right]^{\text{st.ph.}}(Tc) = \frac{C_{Q,1} + C_{Q,2}RP^{\text{st.ph.}}(120.0\,[^{\circ}C])}{1 + C_{Q,3}RP^{\text{st.ph.}}(120.0\,[^{\circ}C])}$$
(9)

where:  $\ln[Q]$  = the logarithm naturale of relative volatility of two consecutive *n*-alkanes [dimensionless] and  $C_{Q,1}$ ,  $C_{Q,2}$  and  $C_{Q,3}$  are constants of Eq. (9). In the following we recognised that the constants of Eq. (9) depend on the column temperature as follows:

$$C_{Q,i} = A_j + \frac{B_j}{Tc + C_j} \tag{10}$$

where *j* is serial number of constants (j=1, 2 and 3 respectively) and  $A_j$ ,  $B_j$  and  $C_j$  are constants of Eq. (10). Similarly:

$$K_{\rm c}^{\rm st.ph.}(Tc) = \frac{K_{1,j} + K_{2,j}RP^{\rm st.ph.}(120.0\,[^{\circ}C])}{1 + K_{3,j}RP^{\rm st.ph.}(120.0\,[^{\circ}C])}$$
(11)

where:  $K_c = \text{Kováts coefficient } [-\ln (\text{cm}^3/\text{g}) [35]$ and  $K_{1,j}$ ,  $K_{2,j}$  and  $K_{3,j}$  are constants of Eq. (11). Moreover we recognised the dependence of the constants in Eq. (11) on column temperature:

$$K_{i,j} = A_{i,j}^* + \frac{B_{i,j}^*}{Tc + C_{i,j}^*}$$
(12)

where: j = serial number of constants (j=1, 2 and 3, respectively) and  $A_{i,j}^*$ ,  $B_{i,j}^*$  and  $C_{i,j}^*$  are constants of Eq. (12). We must mention that the value of  $K_c^{\text{Apolane-87}}$  (*Tc*), that is the retention polarity (at 120.0 [°C]) equals to 2.30, was counted by substitution. We used these data in the McReynolds polarity calculation [35]:

$$MP(Tc)^{\text{st.ph.}} = 2[K_{c}^{\text{st.ph.}}(Tc)/K_{c}^{\text{Apolane}-87}(Tc)] - 1$$
(13)

where: MP = the McReynolds polarity [dimensionless]. Calculations of the retention polarity data at 120.0 [°C] of some stationary phases is given in Table 1. With the assistance of the ln (Q) value, the specific retention volume of n-octane can be counted with Kováts coefficient definition equation [35] as follows:

$$V_{g}\{[nC_{8}](Tc)]\} = \exp\{[0.08 - 0.01K_{c}(Tc)] \ln [Q(Tc)]\}$$
(14)

where:  $V_g$  = the specific retention volume [cm<sup>3</sup>/g] and  $nC_8$  = symbol of *n*-octane. Thus we can calculate the data of all *n*-alkanes, since:

$$\ln \left[Q^{\text{st.ph.}}(Tc)\right] = \ln \left[V_{g}\{z+1\}(Tc)\right] - \ln \left[V_{g}\{z(Tc)\}\right]$$
(15)

where: z is the carbon(atom) number of the first eluted *n*-alkane used. On returning to the definition equation of retention index according to Kováts [30], we can write [35]:

$$S_{c}^{\text{st.ph.}}(Tc) = I^{\text{st.ph.}}(Tc) - K_{c}^{\text{st.ph.}}(Tc)$$
$$= 100 \left\{ \ln \left[ V_{g}^{\text{st.ph.}}(Tc) \right] / \ln \left[ Q^{\text{st.ph.}}(Tc) \right] \right\}$$
(16)

where  $S_c$  is the molecular structural coefficient [35] [ln (cm<sup>3</sup>/g)].

Table 1 Retention polarity of some stationary phases at 120.0 (°C)

| Stationary phase                  | $RP^{a}$ |
|-----------------------------------|----------|
| <i>n</i> -Hexadecane              | 0.35     |
| Nujol                             | 0.50     |
| C78 [46]                          | 1.10     |
| Apiezon-L (2127)                  | 4.83     |
| Apiezon-L (TREATED)               | 4.49     |
| Apiezon-L (2012)                  | 5.11     |
| DC-330                            | 6.37     |
| Apiezon-J                         | 6.60     |
| SF-96                             | 6.44     |
| Apiezon-N                         | 6.73     |
| SE-30                             | 6.96     |
| TFPS-00 [43.49]                   | 7.00     |
| OV-1                              | 7.10     |
| PCN-C78 [44]                      | 7.17     |
| OV-101                            | 7.30     |
| SE-52                             | 10.94    |
| SE-54                             | 11.05    |
| OV-3                              | 13.80    |
| Dinonyl sebacate                  | 17.50    |
| OV-7                              | 18.00    |
| TFPS-15 [43 49]                   | 18.30    |
| DC-550                            | 19.10    |
| DINA                              | 19.20    |
| DEG stearate                      | 20.00    |
| Disodecyl phthalate               | 21.50    |
| DC-703                            | 22.23    |
| Dinonyl phthalate                 | 22.90    |
| TFPS-26 [43 49]                   | 29.10    |
| UCON-LB-550-X                     | 29.30    |
| UCON-I B-1800                     | 29.90    |
| PPG-2000                          | 32.10    |
| Acetyl- <i>n</i> -tributylcitrate | 34.25    |
| TFPS-35 [43 49]                   | 34.80    |
| OV-25                             | 37.60    |
| OF-1                              | 45.99    |
| PPG sehacate                      | 46.63    |
| TFPS-50                           | 49.80    |
| OV-225                            | 55 70    |
| NPGS                              | 69.80    |
| PEG-20M                           | 69.90    |
| PEG-6000                          | 70.45    |
| PEG-4000                          | 70.19    |
| FFAP                              | 75.86    |
| PEG-600                           | 80.40    |
| Reoplex-400                       | 81.70    |
| PDFAS                             | 89.20    |
| DEGS                              | 109.90   |
| EG-bis-cyanoethyl ether           | 116 70   |
| FGS                               | 122 50   |
| TCEP                              | 132.30   |
| BCFF                              | 1/5 2/   |
| DCLI                              | 143.34   |

<sup>a</sup> In calculating we did limit the number of decimal figures.

Using the molecular structural coefficient, the McReynolds standard specific factor can be counted as follows:

$$MF^{\text{st.ph.}}(Tc) = S_{c,i}^{\text{st.ph.}}(Tc) / S_{c,i}(Tc)^{\text{Zerolane}}$$
(17)

where: MF = the McReynolds standard specific polarity factor [dimensionless] and Zerolane = an absolute apolar hypothetical stationary phase [36,37].

The average standard specific polarity factor can be counted with the help of the following equation:

$$APF^{\text{st.ph.}}(Tc) = (1/5) \sum_{i=1}^{5} MF_{i}^{\text{st.ph.}}(Tc)$$
(18)

where: *APF* = average standard specific polarity factor [dimensionless]

Finally, data describing the real polarity circumstances, the effective polarity, in the best way can be counted according to the following equation:

$$P_{\rm e}^{\rm st.ph.}(Tc) = 10MP^{\rm st.ph.}(Tc)[MF^{\rm st.ph.}(Tc) - 1]$$
(19)

where  $P_{\rm e}$  is the effective polarity of the stationary phase used [dimensionless]. System data of the most important constants in Section 3 including other relationships are listed in Tables 2 and 8.

## 3. Practice

The practical part is based on the software of the system shown in Table 2. As you can see in Table 2, the system software wants the name of the compound examined as first input data asking the number of the stationary phases to be considered. It is followed by the name of the first stationary phase, its retention polarity at 120.0 [°C] (Table 1) and isotherm column temperature [°C]. After these the program calculates the constants of the equation, the values of the retention index of the first five McReynolds standards and the wanted parameters of them on three base stationary phases either (squalane, Zerolane and OV-101 with 7.17 retention polarity value). Then the program calculates retention index values of the first five McReynolds standards in the given GC circumstances including other important parameters. The calculation process ends with the calculation of differences of guessed value of the retention index and the measured and

Table 2 System software

```
10 REM"THE GREATEST SYSTEM OF PRECALCULATION IN GLC BETWEEN 60-130 [C]"
20 DIM I(3,5),SC(3,5),VG(3,5),LG(3,5),PS(3,5),DI(3,5),S(3,5),DZ(3,5)
30 CLS
40 PRINT SPC(10)"THE GREATEST SYSTEM OF PRECALCULATION IN GLC BEWEEN 60-130 [C]"
50 INPUT"TYPE OF COLUMN APPLIED (COATED=1;DIFFERENT=0)";CT
60 INPUT"DATE(in quotation marks MONTH-DAY-YEAR)=";DA$
70 LPRINT SPC(5)"THE GREATEST SYSTEM OF PRECALCULATION IN GLC BEWEEN 60-130 [C] ";DA$
80 FOR W=1 TO 80:LPRINT "*";:NEXT W
90 PRINT SPC(5)"PARAMETERS of COLUMN USED"
100 INPUT"No. and/or sign of COLUMN (in quotation marks)=";NU$
110 INPUT"COLUMN LENGHT,[cm]=";L
120 INPUT"COLUMN I.D.[cm] = ";D
130 INPUT"BETA of COLUMN=";BE
140 INPUT" df of COLUMN[cm] = ";DF
150 INPUT"QUANTITY of STATIONARY PHASE USED in the COLUMN APPLIED[g]=";MS
160 INPUT"NAME of COMPOUND EXAMINED (in quotation marks)";N$
170 INPUT"NUMBER OF STATIONARY PHASES EXAMINED";N
180 INPUT"COLUMN TEMPERATURE,[C.]=";TC
190 T=273.16+TC
200 RT=T*62362.7
210 LPRINT SPC(20)" TC,[C.] = ";TC;"T = ";T;"[K.]"
220 LPRINT SPC(15)"PARAMETERS of COLUMN USED"
230 LPRINT SPC(5)NU$;"L=";L;"[cm],I.D.=";D;"[cm],ms=";MS;"[g]"
240 LPRINT SPC(5)"df=";DF;"[cm],BETA=";BE
250 FOR W=1 TO 80:LPRINT"*";:NEXT W
260 PRINT SPC(2)"CALCULATIONS OF CONSTANTS"
270 GOSUB 1250
280 KA = AK + (BK/(2.3 + CC))
290 ST$(1)="ZEROLANE":PR(1)=-20.83
300 ST$(2)="SQUALANE":PR(2)=0
310 ST$(3)="OV-101":PR(3)=7.17
320 GOSUB 1850
330 FOR E=1 TO N
340 PRINT SPC(5)E
350 INPUT"ST.PH.=";ST$
360 INPUT"RP OF ST..PH. at 120.0[C]=";PR
370 INPUT"RETENTION INDEX MEASURED; IF YOU HAVEN'T THEN INPUT:0) = ";MI
380 INPUT"RETENTION INDEX DIFFERENCE MEASURED (IF YOU HAVEN'T THEN INPUT:0)=";XX
390 PRINT SPC(2)"CALCULATIONS"
400 GOSUB 470
410 REM"PRINTING"
420 GOSUB 1550
430 GOSUB 2550
440 FOR W=1 TO 80:LPRINT"#";:NEXT W
450 NEXT E
460 END
470 I1 = (A11 + A12*PR)/(1 + A13*PR)
480 I2 = (A21 + A22*PR)/(1 + A23*PR)
490 I3 = (A31 + A32*PR)/(1 + A33*PR)
500 I4=(A41+A42*PR)/(1+A43*PR)
```

Table 2. Continued

510 I5=(A51+A52\*PR)/(1+A53\*PR) 520 DD(1) = I1 - IS(1)530 DD(2) = I2 - IS(2)540 DD(3) = I3 - IS(3)550 DD(4)=I4-IS(4) 560 DD(5)=I5-IS(5) 570 KA = AK + (BK/(2.3 + CC)) 580 CK = AK + (BK/(PR + CC))590 PM = (2\*(CK/KA))-1 600 LQ = AQ + (BQ/(PR + CQ))610 Q = EXP(LQ)620 B = LQ/LOG(10) 630 R=8.31434 640 REM'[R]=[J/K\*MOL] 650 DG = R\*T\*LQ660 L8=(8-(CK/100))\*LQ 670 V8=EXP(L8) 680 S1=I1-CK 690 S2 = I2 - CK700 S3 = I3 - CK710 S4 = I4 – CK 720 S5 = I5 - CK730 L1=(LQ/100)\*S1 740 L2=(LQ/100)\*S2 750 L3=(LQ/100)\*S3 760 L4=(LQ/100)\*S4 770 L5=(LQ/100)\*S5 780 V1=EXP(L1) 790 V2 = EXP(L2) 800 V3 = EXP(L3) 810 V4=EXP(L4) 820 V5 = EXP(L5)830 RP = 20\*((DD(1)/IS(1)) + (DD(2)/IS(2)) + (DD(3)/IS(3)) + (DD(4)/IS(4)) + (DD(5)/IS(5)))840 P1=S1/SC(1,1) 850 P2 = S2/SC(1,2)860 P3=S3/SC(1,3) 870 P4=S4/SC(1,4) 880 P5=S5/SC(1,5) 890 AP = (P1 + P2 + P3 + P4 + P5)/5900 P=ABS(10\*PM\*(AP-1)) 910 LPRINT SPC(5) ST\$ 920 DR = PR - RP930 FOR W=1 TO 80:LPRINT"\*";:NEXT W 940 LPRINT SPC(5)"DATA OF POLARITY" 950 FOR W=1 TO 80:LPRINT"-";:NEXT W 960 LPRINT SPC(5)"RP(MEAS.) at 120.0[C]=";PR;" RP(CALC.)=";RP;"DELTA RP=";DR 970 LPRINT SPC(5)"APF=";AP;"MP(C)=";PM 980 LPRINT SPC(5)"SPF1 = ";P1;"SPF2 = ";P2;"SPF3 = ";P3;"SPF4 = ";P4;"SPF5 = ";P5 990 LPRINT SPC(5)"EFFECTIVE POLARITY=";P 1000 FOR W=1 TO 80:LPRINT"\*";:NEXT W

1010 LPRINT SPC(5)"DATA OF n-ALKANES"

1020 FOR W=1 TO 80:LPRINT"-";:NEXT W 1030 LPRINT SPC(5)"KC(C)=";CK;"KC(APOLANE-87)=";KA 1040 LPRINT SPC(5)"Vg(n-C8) = ";V8;"ln[Vg(nC8)] = ";L8;"Q = ";Q;"LQ(C) = ";LQ;"b = ";B;"DG(CH2) = ";DG;"[J/MOLE]" 1050 FOR W=1 TO 80:LPRINT"\*";:NEXT W 1060 LPRINT SPC(5)"RETENTION INDICES" 1070 FOR W=1 TO 80:LPRINT"-";:NEXT W 1080 LPRINT SPC(5)"I(BENZENE)=";I1;"I(n-BUTANOL)=";I2;"I(2-PENTANONE)=";I3 1090 LPRINT SPC(5)"I(1-NITROPROPANE) = ";I4;"I(PYRIDINE) = ";I5 1100 LPRINT SPC(5)"DI(BENZENE)=";DD(1);"DI(n-BUTANOL)=";DD(2);"DI(2-PENTANONE)=";DD(3) 1110 LPRINT SPC(5)"DI(1-NITROPROPANE)=";DD(4);"DI(PYRIDINE)=";DD(5) 1120 FOR W=1 TO 80:LPRINT"\*";:NEXT W 1130 LPRINT SPC(5)"RETENTION DATA" 1140 FOR W=1 TO 80:LPRINT"-";:NEXT W 1150 LPRINT SPC(5)"SC(BENZENE) = ";S1;"SC(n-BUTANOL) = ";S2;"SC(2-PENTANONE) = ";S3 1160 LPRINT SPC(5)"SC(1-NITROPROPANE) = ";S4;"SC(PYRIDINE) = ";S5 1170 FOR W=1 TO 80:LPRINT"-";:NEXT W 1180 LPRINT SPC(5)"VG(BENZENE)=";V1;"VG(n-BUTANOL)=";V2;"VG(2-PENTANONE)=";V3 1190 LPRINT SPC(5)"VG(1-NITROPROPANE) = ";V4; "VG(PYRIDINE) = ";V5 1200 LPRINT SPC(5)"LG(BENZENE)=";L1;"LG(n-BUTANOL)=";L2;"LG(2-PENTANONE)=";L3 1210 LPRINT SPC(5)"LG(1-NITROPROPANE) = ";L4;"LG(PYRIDINE) = ";L5 1220 FOR W=1 TO 80:LPRINT "\*";:NEXT W 1230 FOR W=1 TO 80:LPRINT "\*";:NEXT W 1240 RETURN 1250 REM"CALCULATIONS OF CONSTANTS" 1260 A11 = 1390.06313 # - (1368658.6 # / (TC + 1735.95194 #))1270 A12=1.47345878#+(161.447847#/(TC+18.1898927#)) 1280 A13 = -.00413282551 # + (.321027518 # / (TC + 24.2498456 #))1290 A21 = 275.437726 # + (177645.18 # / (TC + 444.913517 #))1300 A22 = -18.7228445 # - (19462.3258 # / (TC - 861.031445 #))1310 A23 = -.018387103 # - (10.8224202 # / (TC - 692.815625 #))1320 A31 = 561.421254 # - (13504.3319 # / (TC - 316.647771 #))1330 A32 = 22.9791448 # + (16272.9574 # / (TC - 959.97109 #))1340 A33 = -.00529014563 # + (.904001794 # / (TC + 122.818624 #))1350 A41 = 813.008951 # - (148747.176 # / (TC + 823.997937 #))1360 A42 = -164.296161 # - (431030.292 # / (TC - 2597.55827 #))1370 A43 = -16.1613972 # - (6470778.29 # / (TC - 400472.085 #))1380 A51 = 1195.29103 # - (279997.158 # / (TC + 443.580041 #))1390 A52 = 65.1506145 # - (97733.4632 # / (TC + 1591.28027 #))1400 A53 = .0202064645 # - (20.1826992 # / (TC + 897.312106 #))1410 AQ = 2.83618 + (98.623/(TC - 218.674)) 1420 BQ=1010.115-(5711.395/(TC-30.478)) 1430 CQ = -858.442 + (4245.836/(TC - 31.2))1440 AK = -7682.288 + (36283853.7 # / (TC + 4806))1450 BK = 300481.718 # + (200594658 # / (TC - 612.573))1460 CC = -859.492 + (959818.103 # / (TC + 1386.56))1470 REM"CALCULATIONS OF RETENTION INDICES OF 1,4-DIOXANE AND FIRST 5 McREYNOLDS' CONSTANTS ON SQUALANE" 1480 IS(0) = 634.5118 - (974.19302 # / (TC - 169.305966 #))1490 IS(1) = 1385.76244 # - (1352925.75 # / (TC + 1725.35765 #))1500 IS(2) = 278.519494 # + (174278.749 # / (TC + 439.734271 #))1510 IS(3) = 562.086191 # - (13220.7335 # /(TC - 314.318583 #))

1520 IS(4) = 807.608523 # - (138154.861 # / (TC + 788.273358 #))

1530 IS(5)=1193.83974#-(278541.673#/(TC+442.264007#)) 1540 RETURN 1550 N\$="1,4-DIOXANE" 1560 REM"QUOTIENT-EQUATION" 1570 X1#=.4729641304# 1580 X2#=1.125373686# 1590 X3#=-.1137505687# 1600 X4#=-.7097169762# 1610 X5#=.2250829962# 1620 X6#=679.3-(839.135/(TC-161.6)) 1630 Z1 = I(1,1)/I(3,1)1640 Z2 = I(1,2)/I(3,2)1650 Z3 = I(1,3)/I(3,3)1660 Z4 = I(1,4)/I(3,4)1670 Z5 = I(1,5)/I(3,5)1680 Y1=I1/I(3,1) 1690 Y2 = I2/I(3,2)1700 Y3 = I3/I(3,3)1710 Y4 = I4/I(3,4)1720 Y5=I5/I(3,5) 1730 II = (Y1\*X1# + Y2\*X2# + Y3\*X3# + Y4\*X4# + Y5\*X5#)\*X6#1740 DD(0) = II - IS(0)1750 IM = XX + IS(0)1760 KD = XX - DD(0)1770 IZ = (Z1\*X1#+Z2\*X2#+Z3\*X3#+Z4\*X4#+Z5\*X5#)\*X6# 1780 LPRINT SPC(5)N\$ 1790 LPRINT SPC(5)"I(SQ)=";IS(0);"I(ZEROLANE)=";IZ;"I(M)=";IM 1800 PRINT SPC(5)"I(SQ)=";IS(0);"I(ZEROLANE)=";IZ;"I(M)=";IM 1810 LPRINT SPC(5)"I(C)=";II;"DI(M)=";XX;"DI(C)=";DD(0);"DELTA DI=";KD 1820 PRINT SPC(5)"I(C)=";II;"DI(M)=";XX;"DI(C)=";DD(0);"DELTA DI=";KD 1830 FOR W=1 TO 80:LPRINT"\*";:NEXT W 1840 RETURN 1850 REM"CALCULATIONS OF FUNDAMENTAL STATIONARY PHASES" 1860 FOR J=1 TO 3 1870 FOR K=1 TO 5 1880 LQ(J) = AQ + (BQ/(PR(J) + CQ)) 1890 CK(J) = AK + (BK/(PR(J) + CC))1900 CK(1)=KA/2 1910 PM(J) = (2\*(CK(J)/KA)) - 11920 Q(J) = EXP(LQ(J))1930 B(J)=LQ(J)/LOG(10) 1940 R=8.31434 1950 REM"[R]=[J/K\*MOL]" 1960 DG(J)=R\*T\*LQ(J) 1970 L8(J) = (8 - (CK(J)/100))\*LQ(J)1980 V8(J) = EXP(L8(J)) 1990 I(J,1) = (A11 + A12\*PR(J))/(1 + A13\*PR(J))2000 I(J,2) = (A21 + A22\*PR(J))/(1 + A23\*PR(J))2010 I(J,3) = (A31 + A32\*PR(J))/(1 + A33\*PR(J))2020 I(J,4) = (A41 + A42\*PR(J))/(1 + A43\*PR(J))

2030 I(J,5)=(A51+A52\*PR(J))/(1+A53\*PR(J))

```
2040 DI(J,K) = I(J,K) - IS(K)
2050 DZ(J,K) = I(J,K) - I(1,K)
2060 SC(J,K) = I(J,K) - CK(J)
2070 LG(J,K)=(LQ(J)/100)*SC(J,K)
2080 VG(J,K) = EXP(LG(J,K))
2090 PS(J,K) = SC(J,K)/SC(1,K)
2100 NEXT K
2110 AP(J) = (PS(J,1) + PS(J,2) + PS(J,3) + PS(J,4) + PS(J,5))/5
2120 P(J) = ABS(10*PM(J)*(AP(J)-1))
2130 \text{ RP}(J) = 20^{*}((DI(J,1)/IS(1)) + (DI(J,2)/IS(2)) + (DI(J,3)/IS(3)) + (DI(J,4)/IS(4)) + (DI(J,5)/IS(5)))
2140 NEXT J
2150 FOR J=1 TO 3
2160 LPRINT SPC(5) ST$(J)
2170 PRINT SPC(5) ST$(J)
2180 FOR W=1 TO 80:LPRINT "*";:NEXT W
2190 LPRINT SPC(5)"DATA OF POLARITY"
2200 PRINT SPC(5)"DATA OF POLARITY"
2210 FOR W=1 TO 80:LPRINT"-";:NEXT W
2220 LPRINT SPC(5)"RP(120.0[C.]=";PR(J)
2230 PRINT SPC(5)"RP(120.0[C.]=";PR(J)
2240 LPRINT SPC(5)"APF=";AP(J);"MP(C)=";PM(J)
2250 LPRINT SPC(5)"PS(BENZENE) = ";PS(J,1);"PS(n-BUTANOL) = ";PS(J,2);"PS(2-PENTANONE) = ";PS(J,3)
2260 LPRINT SPC(5)"PS(1-NITROPROPANE) = ";PS(J,4); "PS(PYRIDINE) = ";PS(J,5)
2270 LPRINT SPC(5)"EFFECTIVE POLARITY =";P(J)
2280 FOR W=1 TO 80:LPRINT "*";:NEXT W
2290 LPRINT SPC(5) "DATA OF n-ALKANES"
2300 FOR W=1 TO 80:LPRINT"-";:NEXT W
2310 LPRINT SPC(5)"KC(C)=";CK(J);"KC(APOLANE-87)=";KA
2320 LPRINT SPC(5)"Vg(n-C8) = ";V8(J);"ln[Vg(nC8)] = ";L8(J);"Q = ";Q(J);"
LQ(C)=";LQ(J);"b=";B(J);"DG(CH2)=";DG(J);"[J/MOLE]"
2330 FOR W=1 TO 80:LPRINT"*";:NEXT W
2340 LPRINT SPC(5)"RETENTION INDICES"
2350 FOR W=1 TO 80:LPRINT"-";:NEXT W
2360 LPRINT SPC(5)"I(BENZENE)=";I(J,1);"I(n-BUTANOL)=";I(J,2);"I(2-
PENTANONE) = ";I(J,3)
2370 LPRINT SPC(5)"I(1-NITROPROPANE) = ";I(J,4);"I(PYRIDINE) = ";I(J,5)
2380 LPRINT SPC(5)"BASE SQ:DI(BENZENE)=";DI(J,1);"DI(n-BUTANOL)=";DI(J,2);"
DI(2-PENTANONE) = ";DI(J,3)
2390 LPRINT SPC(5)"DI(1-NITROPROPANE) = ";DI(J,4);"DI(PYRIDINE) = ";DI(J,5)
2400 LPRINT SPC(5)"BASE ZEROLANE:DI(BENZENE) = ";DZ(J,1);"DI(n-
BUTANOL) = ";DZ(J,2); "DI(2-PENTANONE) = ";DZ(J,3)
2410 LPRINT SPC(5)"DI(1-NITROPROPANE) = ";DI(Z,4);"DI(PYRIDINE) = ";DZ(J,5)
2420 FOR W=1 TO 80:LPRINT"*";:NEXT W
2430 LPRINT SPC(5)"RETENTION DATA"
2440 FOR W=1 TO 80:LPRINT"-";:NEXT W
2450 LPRINT SPC(5)"SC(BENZENE) = ";SC(J,1);"SC(n-BUTANOL) = ";SC(J,2);"SC(2-
PENTANONE) = ";SC(J,3)
2460 LPRINT SPC(5)"SC(1-NITROPROPANE) = ";SC(J,4); "SC(PYRIDINE) = ";SC(J,5)
2470 LPRINT SPC(5)"VG(BENZENE) = ";VG(J,1);"VG(n-BUTANOL) = ";VG(J,2);"VG(2-
PENTANONE = ";VG(J,3)
2480 LPRINT SPC(5)"VG(1-NITROPROPANE)=";VG(J,4);"VG(PYRIDINE)=";VG(J,5)
```

(Cont.)

```
2490 LPRINT SPC(5)"LG(BENZENE) = ";LG(J,1);"VG(n-BUTANOL) = ";LG(J,2);" LG(2-
PENTANONE) = ":LG(J.3)
2500 LPRINT SPC(5)"LG(1-NITROPROPANE)=":LG(J,4);"LG(PYRIDINE)=":LG(J,5)
2510 FOR W=1 TO 80:LPRINT "*";:NEXT W
2520 NEXT I
2530 FOR W=1 TO 80:LPRINT "*";:NEXT W
2540 RETURN
2550 REM"tR CALCULATIONS"
2560 LV=(LQ/100)*(II-KC)
2570 VV=EXP(LV)
2580 NV=VV*MS
2590 INPUT"INLET PRESSURE of CARRIER GAS APPLIED,[kp/cm2]=";IP
2600 INPUT"OUTLET PRESSURE of CARRIER GAS APPLIED,[kp/cm2]=";OP
2610 INPUT"FLOW-RATE of CARRIER GAS USED at the COLUMN
TEMPERATURE,[cm3/min]";FC
2620 LPRINT SPC(5)"FC=";FC;"[CM3/MIN]"
2630 PRINT SPC(5)"FC=";FC;"[CM3/MIN]"
2640 PP = IP/OP
2650 J = 1.5*((PP \times 2 - 1)/(PP \times 3 - 1))
2660 FR = J*FC
2670 IF CT=0 THEN 2700
2680 IF CT=1 THEN INPUT"TM[MIN]=";TM
2690 GOTO 2710
2700 TM = ((D/2)×2*3.14*L)/FR
2710 TR = (NV/FR) + TM
2720 LPRINT SPC(5)"INLET PRESSURE=";IP;"[kp/cm2]"
2730 LPRINT SPC(5)"0UTLET PRESSURE = ";OP;"[kp/cm2]"
2740 LPRINT SPC(5)"J-FACTOR[1]=";J;"J*FC=";FR;"[cm3/min]"
2750 LPRINT SPC(5)"VG(CALC.)=";VV;"[cm3/g], VN(CALC.)=";NV;"[cm3]"
2760 PRINT SPC(5)"VG(CALC.)=";VV;"[cm3/g], VN(CALC.)=";NV;"[cm3]"
2770 LPRINT SPC(5)"tR(CALC.)=";TR;"[min] to=";TM;"[MIN]"
2780 PRINT SPC(5)"tR(CALC.)=";TR;"[min] to=";TM;"[MIN]"
2790 REM"STATIONARY PHASE ACTIVITY CALCULATION"
2800 INPUT"IS THERE PO-VALUE OF COMPOUND EXAMINED (YES=1;NO=0)";QW
2810 IF QW=0 THEN 2880
2820 INPUT"VAPOR PRESSURE of COMPOUND EXAMINED AT COLUMN
TEMPERATURE,[TORR]=";P0
2830 LPRINT SPC(5)"P0=";P0;"[torr]"
2840 PRINT SPC(5)"P0=";P0;"[torr]"
2850 AS = RT/(P0*VV)
2860 PRINT SPC(5)"AS(CALC.)[g/mol]=";AS
2870 LPRINT SPC(5)"AS(CALC.)[g/mol]=";AS
2880 FOR W=1 TO 80:LPRINT "*";:NEXT W
2890 FOR W=1 TO 80:LPRINT"#";:NEXT W
2900 RETURN
```

calculated values (Appendix A, Table 7). After printing, the program is ready to take the data of another stationary phase in the same GLC conditions. If we want to change the GLC circumstances of the calculation, we must start the program again. In Appendix A we sum up the signs used in the system software (Table 2).

We present some retention index values at different column temperatures on three base stationary phases (squalane, Zerolane and OV-101 with 7.17 retention polarity value) in Appendix A. Our first model substance was 1.4-dioxane. Its substance specific factors were determined at 120.0 [°C] with a first order five unknown equation system by determinants and computer. It should be noted that in calculating we did not limit the number of decimal figures:

$$(SE-52/OV-101): (693.9/680.9)s_1$$
  
+ (665.0/641.6)s\_= (678.8/663.4)s\_+

$$(746.0/718.0)s_{4} + (779.3/754.1)s_{5}$$
  
= (720.5/701.4) (20)

$$(DC-703/OV-101): (734.8/680.9)s_1 + (735.6/641.6)s_2 - (726.5/663.4)s_3 + (829.8/718.0)s_4 + (855.5/754.1))s_5 = (779.4/701.4)$$
(21)

(NPGS/OV-101): (942.2/680.9)s<sub>1</sub>

+ 
$$(1047.2/641.6)s_2$$
 +  $(963.8/663.4)s_3$   
+  $(1184.6/718.0)s_4$  +  $(1194.3/754.1)s_5$   
=  $(1060.2/701.4)$  (22)

+ 
$$(1092.4/641.6)s_2$$
 +  $(1002.4/663.4)s_3$   
+  $(1234.1/718.0)s_4$  +  $(1243.7/754.1)s_5$   
=  $(1103.9/701.4)$  (23)

 Table 4

 Substance specific factors of 1,4-dioxane in GLC

| Substance specific factor |                    |  |  |
|---------------------------|--------------------|--|--|
| Symbol                    | Value <sup>a</sup> |  |  |
| <i>s</i> <sub>1</sub>     | 0.47296            |  |  |
| <i>s</i> <sub>2</sub>     | 1.12537            |  |  |
| S 3                       | -0.11375           |  |  |
| <i>S</i> <sub>4</sub>     | -0.70972           |  |  |
| \$ <sub>5</sub>           | 0.22508            |  |  |

<sup>a</sup> We did limit the number of decimal figures in the calculation.

$$(BCEF/OV-101): (1428.6/680.9)s_1 + (1565.7/641.6)s_2 + (1488.9/663.4)s_3 + (1725.1/718.0)s_4 + (1767.1/754.1)s_5 = (1617.1/701.4)$$
(24)

Data calculated with this equation system are shown in Table 3. In our case the sum of substance specific factors was 0.99994 that can be the basis of a calculation. We presented according to Poole [32] in Section 2 that the cause of this deviation is the individual interactions of the substance studied and the McReynolds standards on the squalane stationary phase. In Table 4 some results of a comparing calculation can be found. We must keep in mind that use of the same names for the stationary phases (e.g., in Table 5) does not mean identical GLC conditions [38], because the complete and exact identification of stationary phases applied is very important in these cases (Table 6).

Table 3

Retention data of the first five McReynolds standards on Zerolane at different column temperatures (°C)

| Standard       | Column temperatures (°C) |       |       |       |       |       |       |       |
|----------------|--------------------------|-------|-------|-------|-------|-------|-------|-------|
|                | 60.0                     | 70.0  | 80.0  | 90.0  | 100.0 | 110.0 | 120.0 | 130.0 |
| Benzene        | 550.6                    | 555.0 | 559.2 | 563.2 | 567.1 | 571.0 | 574.8 | 578.5 |
| n-Butanol      | 497.8                    | 487.7 | 477.6 | 467.5 | 457.5 | 447.5 | 437.4 | 427.4 |
| 2-Pentanone    | 508.4                    | 512.0 | 516.1 | 520.7 | 525.8 | 531.3 | 537.4 | 544.1 |
| 1-Nitropropane | 517.0                    | 509.3 | 501.4 | 493.2 | 484.7 | 475.8 | 466.7 | 457.3 |
| Pyridine       | 505.8                    | 511.4 | 516.7 | 521.7 | 526.5 | 530.9 | 535.1 | 539.1 |
| 1,4-Dioxane    | 532.8                    | 534.0 | 535.0 | 536.0 | 537.1 | 538.5 | 540.5 | 544.2 |

It should be noted that we can precalculate retention data of the first five McReynolds standards and any kind of substance examined on Zerolane at different column temperatures (°C) by the software presented in Table 2.

196

Table 5

Comparison of measured and calculated retention indices on some stationary phases at different column temperatures

| Stationary phase                | Column temp. | Retention index             |            |            |
|---------------------------------|--------------|-----------------------------|------------|------------|
|                                 | (°C)         | Measured                    | Calculated | $\Delta I$ |
| DC-710                          | 60           | $820.7^{a}$                 | 819.2      | 1.5        |
| DC-710                          | 70           | 822.6 <sup>a</sup>          | 823.6      | -1.0       |
| TFPS-00 <sup>b,c</sup>          | 80           | 688.8                       | 684.5      | 4.3        |
| TFPS-09 <sup>b,c</sup>          | 80           | 725.3                       | 723.5      | 1.8        |
| TFPS-15 <sup>b,c</sup>          | 80           | 753.4                       | 751.2      | 2.2        |
| TFPS-26 <sup>b,c</sup>          | 80           | 818.1                       | 818.6      | -0.5       |
| Apiezon-L                       | 100          | $687.0^{d}$                 | 687.3      | -0.3       |
| DC-200                          | 100          | 697.0 <sup>d</sup>          | 696.1      | 0.9        |
| Diethylhexyl sebacate           | 100          | 759.0 <sup>d</sup>          | 759.4      | -0.4       |
| Celanese ester No.9             | 100          | $778.0^{d}$                 | 777.6      | 0.4        |
| Diisodecil phthalate            | 100          | $779.0^{d}$                 | 779.2      | 0.2        |
| DC-710                          | 100          | 823.0 <sup>d</sup>          | 822.0      | 1.0        |
| PPG                             | 100          | $826.0^{d}$                 | 825.7      | 0.3        |
| Acetvltributvl citrate          | 100          | $860.0^{d}$                 | 859.8      | 0.2        |
| OF-1                            | 100          | $876.0^{d}$                 | 877.4      | -1.4       |
| Tricresvl-phosphate             | 100          | 902.0 <sup>d</sup>          | 903.6      | -1.6       |
| Polyphenyl-ether                | 100          | 919.0 <sup>d</sup>          | 918.2      | 0.8        |
| Marlophen-87                    | 100          | $925.0^{d}$                 | 924.5      | 0.5        |
| Polypropylene sebacate          | 100          | 931.0 <sup>d</sup>          | 931.5      | -0.5       |
| Marlophen-814                   | 100          | 971 0 <sup>d</sup>          | 971 5      | -0.5       |
| NPGS                            | 100          | $1080.0^{d}$                | 1080.3     | -0.3       |
| PEG-20M                         | 100          | 1081.0 <sup>d</sup>         | 1081 7     | -0.7       |
| XF-1150                         | 100          | $1091.0^{d}$                | 1091.5     | 0.5        |
| PEG-4000                        | 100          | 1091.0 <sup>d</sup>         | 1091.1     | -0.1       |
| Reoplex-400                     | 100          | $1159.0^{d}$                | 1158.6     | 0.1        |
| DEGS                            | 100          | 1363 0 <sup>d</sup>         | 1362.7     | 0.1        |
| Ethyleneglycol-cyanoethyl ether | 100          | 1402 0 <sup>d</sup>         | 1402.6     | -0.6       |
| TCFP                            | 100          | 1517.0                      | 15177      | -0.7       |
| n-C36                           | 120          | 659.0 <sup>e</sup>          | 659.6      | -0.6       |
| Nuiol                           | 120          | 660.0°                      | 660.8      | -0.8       |
| Apjezon-M                       | 120          | 682 0°                      | 682.5      | -0.5       |
| Apiezon-I $(2127)$              | 120          | 685 0 <sup>e</sup>          | 685.5      | -0.5       |
| Apiezon L $(2012)$              | 120          | 687.0 <sup>e</sup>          | 687.2      | -0.2       |
| SE 06                           | 120          | 695 0°                      | 694.7      | 0.2        |
| Apiezon I                       | 120          | 696 0 <sup>e</sup>          | 696 1      | -0.1       |
| Apiezon N                       | 120          | 607 0 <sup>e</sup>          | 606.6      | 0.1        |
| SE 30                           | 120          | 697.0                       | 697.9      | 0.4        |
| OV 1                            | 120          | 600 0 <sup>e</sup>          | 608.8      | 0.1        |
| DC 200(2087)                    | 120          | 700.0 <sup>e</sup>          | 600.0      | 0.2        |
| DC-200(2087)                    | 120          | 700.0<br>700.0 <sup>e</sup> | 600.2      | 0.1        |
| SE 52                           | 120          | 700.0<br>721.0 <sup>e</sup> | 721 6      | 0.8        |
| SE-52<br>SE 54                  | 120          | 721.0<br>722.0 <sup>e</sup> | 721.0      | -0.0       |
|                                 | 120          | 722.0<br>725.0°             | 721.9      | 0.1        |
| APH<br>OV 2                     | 120          | 735.0<br>728.0 <sup>e</sup> | 735.2      | -0.2       |
|                                 | 120          | 750.0<br>762.0 <sup>e</sup> | 138.1      | -0.1       |
| APW                             | 120          | 763.0<br>770.0°             | 763.6      | -0.6       |
| DINA<br>OV 7                    | 120          | 774.0°                      | //0.9      | -0.9       |
| UV-/                            | 120          | //4.0 <sup>-</sup>          | //4.6      | -0.6       |
| DC-550(2120)                    | 120          | /82.0<br>788.0°             | /81.6      | 0.4        |
| DC-703                          | 120          | 788.0°                      | /88.3      | -0.3       |
| Dinonyl phthalate               | 120          | 792.0                       | /93.0      | -1.0       |
| 00-11                           | 120          | 818.0                       | 818.3      | -0.3       |

Table 5. Continued

| Stationary phase     | Column temp. | Retention index     |            |            |  |
|----------------------|--------------|---------------------|------------|------------|--|
|                      | (°C)         | Measured            | Calculated | $\Delta I$ |  |
| OV-22                | 120          | 882.0 <sup>e</sup>  | 881.9      | 0.1        |  |
| OV-225               | 120          | 996.0 <sup>e</sup>  | 995.6      | 0.4        |  |
| PEG-6000             | 120          | 1091.0 <sup>e</sup> | 1091.1     | -0.1       |  |
| FFAP                 | 120          | 1098.0 <sup>e</sup> | 1097.6     | 0.4        |  |
| PEG-600              | 120          | 1157.0 <sup>e</sup> | 1157.8     | -0.8       |  |
| PDEAS                | 120          | 1216.0 <sup>e</sup> | 1216.4     | -0.4       |  |
| BCEF                 | 120          | 1518.0 <sup>e</sup> | 1518.1     | -0.1       |  |
| C78 <sup>i</sup>     | 130          | $669.7^{f}$         | 670.1      | -0.4       |  |
| MTF-C78              | 130          | 683.8 <sup>g</sup>  | 684.1      | -0.3       |  |
| PC1-C78 <sup>i</sup> | 130          | 684.6 <sup>h</sup>  | 684.7      | -0.1       |  |
| PBr-C78              | 130          | 685.5 <sup>h</sup>  | 685.7      | -0.2       |  |
| PCN-C78              | 130          | 706.3 <sup>h</sup>  | 705.8      | 0.5        |  |
| TMO-C78              | 130          | 716.3 <sup>h</sup>  | 716.1      | 0.2        |  |
| POH-C78              | 130          | 716.9 <sup>f</sup>  | 717.3      | -0.4       |  |
| TTF-C78              | 130          | 718.2 <sup>g</sup>  | 717.9      | 0.3        |  |

<sup>a</sup> Ref. [48]; <sup>b</sup> Ref. [43]; <sup>c</sup> Ref. [49]; <sup>d</sup> Ref. [5]; <sup>e</sup> Ref. [6]; <sup>f</sup> Ref. [46]; <sup>g</sup> Ref. [45]; <sup>h</sup> Ref. [44]; <sup>i</sup> Ref. [47].

## 4. Experimental

In most of the cases the experimental work meant controlling of the data and values read in literature (the GLC parameters of the essential experiment series are listed in Appendix A, Table 9).

The purpose was to define the equations of temperature dependence. With the help of computers, for this work we used data on 27 stationary phases and mathematical methods (regression relations, multivariable equations, etc.) based on hundreds of data in the literature [2-6,9,10].

Unfortunately, this heterogeneous database increased the number of faults in calculation as you can see below mostly because we found totally different data in different GLC circumstances; in the

Table 6 Influence of the origin of the stationary phase on the retention polarity determined on DEGS at 120.0 (°C)

| Supplier                   | Retention polarity |
|----------------------------|--------------------|
| Supelco No. 1045           | 102.55             |
| Chemical Research Services | 106.63             |
| Supelco No. 1303           | 108.87             |
| PolyScience Corp.          | 110.03             |

case of data measured on filled columns. Differentiation on column temperature of data on literature was also a disadvantage because most of the measures have been done at 120.0 [°C]. Because of this, it is not obvious that the reliability of values is best at 120.0 [°C] and then decreases step by step towards 60.0 [°C] as the distribution of false measures was accidental.

With the contribution and assistance of other researchers and research teams the database can be recontrolled and the number of data could be recalculated and increased to make the basis more trustworthy and perfect because its trust-level is 92% at the moment.

# 5. Conclusions

Simulation of GLC processes with computer and precalculation of retention data in advance are three dimension processes.

The first dimension is presented by the stationary phase used, the second by the used isothermal and/ or programmed column temperature (including programmed temperature evaporator also if it is), the third by retention data given by the first two ones. Table 7A protocol list of the system software

The greatest system of precalculation in GLC between 60-130 (°C); 09.02,1997

```
TC [^{\circ}C] = 120 \text{ T} = 393.16 [^{\circ}K]
PARAMETERS OF COLUMN USED
HP-ULTRA 1, No.1909/1A-112, wall-coated open tubular column; L=2500 [cm], I.D.=0.032 [cm], m<sub>z</sub>=0.0171 [g]
d_f = 0.52 \ [\mu m], \ \beta = 150
ZEROLANE
DATA OF POLARITY
RP(120.0 [^{\circ}C]) = -20.83
APF = 1 MP(C) = 0
PS(BENZENE) = 1 PS(n-BUTANOL) = 1 PS(2-PENTANONE) = 1
PS(1-NITROPROPANE)=1 PS(PYRIDINE)=1
EFFECTIVE POLARITY=0
DATA OF n-ALKANES
K<sub>a</sub>(C)=84.26736 KC(APOLANE-87)=168.5347
V_{a}(nC8) = 148.3833 \ln [V_{a}(nC8)] = 4.999799 Q = 2.010849 LQ(C) = 0.6985568
b=0.3033794 DG(CH2)=2283.488 [J/mol]
RETENTION INDICES
I(BENZENE) = 574.7573 I(n-BUTANOL) = 437.4364 I(2-PENTANONE) = 537.4384
I(1-NITROPROPANE)=466.7024 I(PYRIDINE)=535.1068
BASE SQ:DI(BENZENE) = \pm 77.85413^{\circ} DI(n-BUTANOL) = -152.4429 DI(2-PENTANONE) = -92.68421
DI(1-NITROPROPANE) = -188.799 DI(PYRIDINE) = -163.34
BASE ZEROLANE:DI(BENZENE)=0 DI(n-BUTANOL)=0 DI(2-PENTANONE)=0
DI(1-NITROPROPANE) = 0 DI(PYRIDINE) = 0
RETENTION DATA
SC(BENZENE) = 490.49 SC(n-BUTANOL) = 353.169 SC(2-PENTANONE) = 453.171
SC(1-NITROPROPANE)=382.435 SC(PYRIDINE)=450.8394
VG(BENZENE)=30.76418 VG(n-BUTANOL)=11.78804 VG(2-PENTANONE)=23.7043
VG(1-NITROPROPANE)=14.46202 VG(PYRIDINE)=23.32135
LG(BENZENE)=3.426351 LG(n-BUTANOL)=2.467086 LG(2-PENTANONE)=3.165657
LG(1-NITROPROPANE)=2.671526 LG(PYRIDINE)=3.149369
SQUALANE
DATA OF POLARITY
RP(120.0 [^{\circ}C]) = 0
APF=1.141382 MP(C)=0.9404731
PS(BENZENE)=0.9971696 PS(n-BUTANOL)=1.207308 PS(2-PENTANONE)=1.029579
PS(1-NITROPROPANE) = 1.286281 PS(PYRIDINE) = 1.186573
EFFECTIVE POLARITY=1.32966
DATA OF n-ALKANES
K_c(C) = 163.5186 \text{ KC}(APOLANE-87) = 168.5347
Vg(nC8)=70.81283 ln [Vg(nC8)]=4.260041 Q=1.952891 LQ(C)=0.6693111
b=0.2906781 DG(CH2)=2187.888 [J/mol]
RETENTION INDICES
I(BENZENE)=652.6203 I(n-BUTANOL)=589.9021 I(2-PENTANONE)=630.094
I(1-NITROPROPANE)=655.4375 I(PYRIDINE)=698.4723
BASE SQ:DI(BENZENE)=0 DI(n-BUTANOL)=0 DI(2-PENTANONE)=0
DI(1-NITROPROPANE) = 0 DI(PYRIDINE) = 0
BASE ZEROLANE:DI(BENZENE) = 77.86291 DI(n-BUTANOL) = 152.4658
DI(2-PENTANONE) = 92.65558 DI(1-NITROPROPANE) = 188.74 DI(PYRIDINE) = 163.3655
RETENTION DATA
SC(BENZENE)=489.1017 SC(n-BUTANOL)=426.3836 SC(2-PENTANONE)=466.5754
SC(1-NITROPROPANE) = 491.9189 SC(PYRIDINE) = 534.9537
```

```
VG(BENZENE) = 26.40654 VG(n-BUTANOL) = 17.35416 VG(2-PENTANONE) = 22.7108
VG(1-NITROPROPANE) = 26,90918 VG(PYRIDINE) = 35,89162
LG(BENZENE) = 3.273612 LG(n-BUTANOL) = 2.853832 LG(2-PENTANONE) = 3.122841
LG(1-NITROPROPANE)=3.292467 LG(PYRIDINE)=3.580504
OV-101
DATA OF POLARITY
RP(120.0 [°C])=7.17
APF=1.216232 MP(C)=1.13024
PS(BENZENE)=1.022169 PS(n-BUTANOL)=1.30853 PS(2-PENTANONE)=1.1.067794
PS(1-NITROPROPANE) = 1.408112 PS(PYRIDINE) = 1.274553
EFFECTIVE POLARITY = 2.443934
DATA OF n-ALKANES
K<sub>c</sub>(C)=179.5097 KC(APOLANE-87)=168.5347
Vg(nC8) = 59.64256 \ln [Vg(nC8)] = 4.088369 Q = 1.932652 LQ(C) = 0.6588934
b=0.2861537 DG(CH2)=2153.834 [J/mol]
RETENTION INDICES
I(BENZENE)=680.8731 I(n-BUTANOL)=641.642 I(2-PENTANONE)=663.4028
I(1-NITROPROPANE) = 718.021 I(PYRIDINE) = 754.1285
BASE SQ:DI(BENZENE) = 28.2616 DI(n-BUTANOL) = 51.76264 DI(2-PENTANONE) = 33.28027
DI(1-NITROPROPANE)=62.51953 DI(PYRIDINE)=55.6817
BASE ZEROLANE:DI(BENZENE)=106.1157 DI(n-BUTANOL)=204.2056
DI(2-PENTANONE) = 125.9645 DI(1-NITROPROPANE) = 251.3186 DI(PYRIDINE) = 219.0217
RETENTION DATA
SC(BENZENE) = 501.3634 SC(n-BUTANOL) = 462.1323 SC(2-PENTANONE) = 483.8932
SC(1-NITROPROPANE) = 538.5113 SC(PYRIDINE) = 574.6188
VG(BENZENE) = 27.20633 VG(n-BUTANOL) = 21.00916 VG(2-PENTANONE) = 24.24814
VG(1-NITROPROPANE) = 27.20633 VG(PYRIDINE) = 44.08523
LG(BENZENE) = 3.30345 LG(n-BUTANOL) = 3.044959 LG(2-PENTANONE) = 3.18834
LG(1-NITROPROPANE) = 3.548215 LG(PYRIDINE) = 3.786125
DIMETHYLPOLYSILOXANE
DATA OF POLARITY
RP(MEAS.) at 120.0 [°C]=10.94 RP(CALC.)=10.95159 DELTA RP=-0.01159
APF=1.254433 MP(C)=1.235181
PS(BENZENE) = 1.035071 PS(n-BUTANOL) = 1.360097 PS(2-PENTANONE) = 1.087602
PS(1-NITROPROPANE) = 1.469806 PS(PYRIDINE) = 1.319589
EFFECTIVE POLARITY=3.142709
DATA OF n-ALKANES
K_c(C) = 188.3529 \text{ KC}(APOLANE-87) = 168.5347
Vg(nC8) = 54.38782 ln [Vg(nC8)] = 3.99614 Q = 1.921951 LQ(C) = 0.6533408
b=0.2837423 DG(CH2)=2135.683 [J/mol]
RETENTION INDICES
I(BENZENE)=696.045 I(n-BUTANOL)=668.6969 I(2-PENTANONE)=681.2223
I(1-NITROPROPANE) = 750.4583 I(PYRIDINE) = 783.2754
BASE SQ:DI(BENZENE) = 43.43347 DI(n-BUTANOL) = 78.81763 DI(2-PENTANONE) = 51.09973
DI(1-NITROPROPANE)=94.95691 DI(PYRIDINE)=84.82868
BASE ZEROLANE:DI(BENZENE)=121.2877 DI(n-BUTANOL)=231.2605
DI(2-PENTANONE)=143.7839 DI(1-NITROPROPANE)=283.7559 DI(PYRIDINE)=248.1686
RETENTION DATA
SC(BENZENE) = 507.6921 SC(n-BUTANOL) = 480.3441 SC(2-PENTANONE) = 492.8695
SC(1-NITROPROPANE) = 562.1055 SC(PYRIDINE) = 594.9226
VG(BENZENE) = 27.57638 VG(n-BUTANOL) = 23.06425 VG(2-PENTANONE) = 25.03105
VG(1-NITROPROPANE)=39.34875 VG(PYRIDINE)=48.75812
LG(BENZENE)=3.31696 LG(n-BUTANOL)=3.138284 LG(2-PENTANONE)=3.220117
LG(1-NITROPROPANE)=3.672464 LG(PYRIDINE)=3.886872
1,4-DIOXANE I(SQ)=654.2699 I(ZEROLANE)=540.499 I(M)=721.2699
```

 $I(C) = 721.5228 DI(M) = 67 DI(C) = 67.25293 DELTA DI = -0.2529297^{b}$ FC = 1.51 [cm<sup>3</sup>/min]; J-FACTOR [1] = 0.790858; J\*FC = 1.194196 [cm<sup>3</sup>/min] INLET PRESSURE = 1.51 [kp/cm<sup>2</sup>]; OUTLET PRESSURE = 1.01 [kp/cm<sup>2</sup>] VG(CALC.) = 111.4976 [cm<sup>3</sup>/g], VN(CALC.) = 1.906609 [cm<sup>3</sup>] tR(CALC.) = 3.27937 [min], to = 1.682807 [min] P0 = 2203.59 [Torr]; AS(CALC.) = 99.79251 [g/mole]

<sup>a</sup> It should be noted that retention indices are bigger on squalane than on zerolane stationary phase so their difference has a negative value. In calculating we did not limit the number of decimal figures.

<sup>b</sup> In calculating we did not limit the number of decimal figures.

There has been a demand for a third dimension for a long time because the Rohrschneider concept and calculating method and the similar McReynolds system had only two dimensions (choice of stationary phase and 100.0, and column temperature at 120.0 [°C]). Up to this time this demand has not been satisfied because of the lack of the background relations.

Equations presented in this paper can solve this problem theoretically. But as was mentioned above, because of some databases at given column temperatures and of the heterogeneous databases, the certainty of calculations are not satisfying. Hopefully other researchers will help us and after a period of time, having more retention data, the constants of the equations are going to be more reliable.

This paper presents a new computer software to precalculate the retention data between 60-130 [°C] on different stationary phases.

This method can be used in GLC conditions of programmed temperature using data from literature [29].

## Acknowledgements

The author expresses his thanks to those researchers who significantly helped this research work during the last 38 years by sending reprints of their valuable and interesting papers.

## Appendix A

We can write according to Littlewood et al. [39]:

$$V_{\rm g}^{\rm st.ph.}(Tc) = \frac{V_{\rm N}^{\rm st.ph.}(Tc)}{m_{\rm S}} = \frac{RT}{p^{\circ}(Tc)\gamma^{\rm st.ph.}(Tc)M_{\rm S}}$$
(25)

where:  $V_{\rm N}$  = net retention volume [cm<sup>3</sup>];  $m_{\rm S}$  = mass of the stationary phase used in the column applied [g]; T = the column temperature [°K]; R = universal gas constant [cm<sup>3</sup> Torr/mol °K], its value = 62362.7 (1 Torr = 133.322 Pa);  $p^{\circ}$  = the vapor pressure of the pure substance studied [Torr] (hereby we notice that this dimension should be used in the SI system [Pa] but because of the ten times magnitude order (in Torr) and the difficulties in converting given data published before, the usage of the Torr dimension is allowed);  $\gamma$  = classical activity coefficient [41] [dimensionless];  $M_{\rm S}$  = mass of the used stationary phase [g/mol]. The polymer stationary phases made it necessary to have a new definition for activity. It is possible as reported by Schay [42]:

$$A_{s}(T)^{\text{st.ph.}} = \gamma^{\text{st.ph.}}(T)M_{s}^{\text{st.ph.}}$$
(26)

where:  $A_s$  = stationary phase activity [g/mol]. From Eq. (25):

$$A_{s}(T)^{\text{st.ph.}} = m_{s}RT/p^{\circ}(T)V_{N}(T)^{\text{st.ph.}}$$
(27)

Last but not least, we summarized a protocol list (Table 7) and the symbols of the system software (Table 8). The GLC parameters of the essential experiment series are given in Table 9.

Table 8 Symbols of system software

A11,A12,A13,A21,A22,A23,A31,A32,A33,A41,A42,A43,A51,A52 and A53 = a constants of Eqs. (3)-(5). AK = a constant of Eq. (11) AP=average standard specific polarity factor calculated of first 5 McReynolds standards on stationary phase used at TC column temperature [°C] [dimensionless] AP(1),AP(2) and AP(3) = average standard specific polarity factor calculated of first 5 McReynolds standards on basic stationary phases used at TC column temperature [°C] [dimensionless] AP=average standard specific polarity factor calculated of first 5 McReynolds standards on stationary phase used at TC column temperature [°C] [dimensionless] AP(1),AP(2) and AP(3)=average standard specific polarity factor calculated of first 5 McReynolds standards on basic stationary phases used at TC column temperature [°C] [dimensionless] AQ = a constant of Eq. (7) B = logarithm (on base: 10) of relative volatility of two consecutive *n*-alkanes used on stationary phase used at TC column temperature [°C] (the "b-value"), [dimensionless] B(1),B(2) and B(3) = logarithm (on base: 10) of relative volatility of two consecutive *n*-alkanes used on basic stationary phases used at TC column temperature [°C] [dimensionless] BK = a constant of Eq. (11) BQ = a constant of Eq. (7) CC = a constant of Eq. (11) CK = the Kováts coefficient calculated, [-ln (cm<sup>3</sup>/g)], on a stationary phase used at TC column temperature [°C] CK(1), CK(2) and CK(3) = the Kováts coefficient calculated,  $[-\ln (cm^3/g)]$ , on basic stationary phases used at TC column temperature [°C] CQ = a constant of Eq. (7) DD(0)=difference of retention indices calculated between stationary phases used and squalane of the substance examined at TC column temperature [°C] [dimensionless] DD(1),DD(2),DD(3),DD(4) and DD(5)=difference of retention indices calculated between stationary phases used and squalane of first 5 McReynolds standards used at TC column temperature [°C] [dimensionless] DG = symbol of  $\Delta G$ , [J/mol]  $\Delta G^{\circ}$  = free energy of substance examined on a stationary phase used at TC column temperature [°C] [J/mol]  $\Delta G(1), \Delta G(2)$  and  $\Delta G(3)$  = free energy of substance examined on basic stationary phases used at TC column temperature [°C] [J/mol] DI(1,1), DI(1,2), DI(1,3), DI(1,4) and DI(1,5) = difference of retention indices calculated between the Zerolane stationary phases and squalane of first 5 McReynolds standards at TC column temperature [°C] [dimensionless] DI(3,1),DI(3,2),DI(3,3),DI(3,4) and DI(3,5) = difference of retention indices calculated between an OV-101 stationary phases with retention polarity 7.17 at 120.0 [°C] and squalane of first 5 McReynolds standards at TC column temperature [°C] [dimensionless] DZ(2,1), DZ(2,2), DZ(2,3), DZ(2,4) and DZ(2,5) = difference of retention indices calculated between a squalane stationary phases and the Zerolane of first 5 McReynolds standards at TC column temperature [°C] [dimensionless] DZ(3,1), DZ(3,2), DZ(3,3), DZ(3,4) and DZ(3,5) = difference of retention indices calculated between an OV-101 stationary phases with retention polarity 7.17 at 120.0 [°C] and the Zerolane of first 5 McReynolds standards at TC column temperature [°C] [dimensionless] I(1,1),I(1,2),I(1,3),I(1,4) and I(1,5) = retention indices calculated of first 5 McReynolds standards on the Zerolane stationary phase at TC column temperature [°C] [dimensionless] I(2,1),I(2,2),I(2,3),I(2,4) and I(2,5)=retention indices calculated of first 5 McReynolds standards on a squalane stationary phase at TC column temperature [°C] [dimensionless] I(3,1),I(3,2),I(3,3),I(3,4) and I(3,5) = retention indices calculated of first 5 McReynolds standards at TC column temperature [°C] [dimensionless] on an OV-101 stationary phase with retention polarity

## 7.17 at 120.0 [°C]

DI(MEAS.)=difference of retention indices measured between stationary phases used and squalane

of the substance examined at TC column temperature [°C] [dimensionless]

E=serial number of stationary phases examined

f=serial number

FC=flow-rate of the carrier gas used [cm<sup>3</sup>/min]

FR = adjusted flow-rate by j-factor [cm<sup>3</sup>/min]

I(1,1),I(1,2),I(1,3),I(1,4) and I(1,5)=retention indices calculated of first 5 McReynolds standards on the Zerolane stationary phase at TC column temperature [°C] [dimensionless]

I(2,1),I(2,2),I(2,3),I(2,4) and I(2,5) = retention indices calculated of first 5 McReynolds standards on a squalane stationary phase at TC column temperature [°C] [dimensionless]

I(3,1),I(3,2),I(3,3),I(3,4) and I(3,5) = retention indices calculated of first 5 McReynolds standards at TC column temperature [°C] [dimensionless] on an OV-101 stationary phase with retention polarity 7.17 at 120.0 [°C].

11,12,13,14 and 15=retention indices calculated of first 5 McReynolds standards on a stationary phase used at TC column temperature [ $^{\circ}$ C] [dimensionless]

II=retention index calculated of the compound examined on stationary phase used at TC column temperature [°C] [dimensionless]

IP=inlet pressure of the carrier gas used  $[kp/cm^2]$ 

IS(1),IS(2),IS(3),IS(4) and IS(5)=retention indices calculated of first 5 McReynolds standards on a squalane stationary phase at TC column temperature [ $^{\circ}$ C]

IZ=retention index calculated of the substance studied on the Zerolane stationary phase at TC column temperature [ $^{\circ}$ C] [dimensionless]

j=the compressibility factor according to James and Martin [1]

KA=the Kováts coefficient calculated,  $[-\ln (cm^3/g)]$ , on Apolane-87 stationary phase used at TC column temperature [°C]

KD=retention index difference of measured and calculated retention indices or retention index differences [dimensionless]

L1,L2,L3,L4 and L5=logarithm naturale (on base: e=2.7182...) of specific retention volume calculated of first 5 McReynolds standards on stationary phase used at TC column temperature [°C] LG(1,1),LG(1,2),LG(1,3),LG(1,4) and LG(1,5)=symbol of the natural logarithm of specific retention volume of first 5 McReynolds standards, [ln (cm<sup>3</sup>/g)], on the Zerolane phase used at TC column temperature [°C]

L8=symbol of the natural logarithm of *n*-octane's specific retention volume,  $[\ln (\text{cm}^3/\text{g})]$ , on a stationary phase used at TC column temperature [°C]

L8(1)=symbol of the natural logarithm of *n*-octane's specific retention volume,  $[\ln (\text{cm}^3/\text{g})]$ , on the Zerolane stationary phase used at TC column temperature [°C]

L8(2)=symbol of the natural logarithm of *n*-octane's specific retention volume,  $[\ln (\text{cm}^3/\text{g})]$ ,

on a squalane stationary phase used at TC column temperature, [°C]

L8(3)=symbol of the natural logarithm of *n*-octane's specific retention volume,  $[\ln (cm^3/g)]$ , at TC column temperature, [°C] on an OV-101 stationary phase with retention polarity 7.17 at 120.0 [°C]

LQ=naturale logarithm (on base: e=2.7182...) of relative volatility of two consecutive *n*-alkanes used on stationary phase used at TC column temperature [°C] [dimensionless]

LV=symbol of the natural logarithm of 1,4-dioxane's specific retention volume, [ln (cm<sup>3</sup>/g)], at TC column temperature [ $^{\circ}$ C] on stationary phase used

MF=the McReynolds standard specific polarity factor

MS = mass of the stationary phase used in the column applied [g]

N=number of stationary phases examined

| NV=net retention volume of 1,4-dioxane [cm <sup>3</sup> ] at TC column temperature [°C] on stationary                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| phase used                                                                                                                                               |
| OP=outlet pressure of the carrier gas used [kp/cm <sup>2</sup> ]                                                                                         |
| $P_e$ = the effective polarity of stationary phase used at TC column temperature [°C] [dimensionless]                                                    |
| P(1) = the effective polarity of Zerolane stationary phase used at TC column temperature [°C]                                                            |
| [dimensionless]                                                                                                                                          |
| P(2)=the effective polarity of a squalane stationary phase used at TC column temperature [°C]                                                            |
| [dimensionless]                                                                                                                                          |
| P(3) = the effective polarity of an OV-101 stationary phase used at TC column temperature [°C] [dimensionless] with retention polarity 7 17 at 1200 [°C] |
| P1 P2 P3 P4 and P5 = substance specific polarity factor calculated of first 5 McRevnolds standards on                                                    |
| stationary phase used at TC column temperature [°C] [dimensionless]                                                                                      |
| PM=the McRevnolds polarity calculated on stationary phase used at TC column temperature [°C]                                                             |
| [dimensionless]                                                                                                                                          |
| PP=relative pressure drop                                                                                                                                |
| PR = retention polarity measured at 120.0 [°C] [dimensionless]                                                                                           |
| PS(1,1), $PS(1,2)$ , $PS(1,3)$ , $PS(1,4)$ and $PS(1,5)$ = substance specific polarity factor calculated of first 5                                      |
| McRevnolds standards on Zerolane stationary phase at TC column temperature [ $^{\circ}$ C]                                                               |
| [dimensionless]                                                                                                                                          |
| PS(2,1),PS(2,2),PS(2,3),PS(2,4) and $PS(2,5) =$ substance specific polarity factor calculated of first 5                                                 |
| McReynolds standards on a squalane stationary phase at TC column temperature [°C]                                                                        |
| [dimensionless]                                                                                                                                          |
| PS(3,1),PS(3,2),PS(3,3),PS(3,4) and $PS(3,5) =$ substance specific polarity factor calculated of first 5                                                 |
| McReynolds standards on an OV-101 stationary phase with retention polarity 7.17                                                                          |
| at 120.0 [°C] at TC column temperature [°C] [dimensionless]                                                                                              |
| Q=relative volatility of two consecutive <i>n</i> -alkanes used on stationary phase used at TC column                                                    |
| temperature [°C] [dimensionless]                                                                                                                         |
| R = universal gas constant [J/°K·mol]                                                                                                                    |
| RP=retention polarity calculated of stationary phase at TC column temperature [°C]                                                                       |
| [dimensionless]                                                                                                                                          |
| RP(1)=retention polarity calculated of Zerolane at TC column temperature [°C] [dimensionless]                                                            |
| RP(2)=retention polarity calculated of a squalane stationary phase at TC column temperature [°C]                                                         |
| [dimensionless]                                                                                                                                          |
| RP(3)=retention polarity calculated of an OV-101 stationary phase with retention polarity 7.17                                                           |
| at 120.0 [°C] at TC column temperature [°C] [dimensionless]                                                                                              |
| ST\$=symbol of stationary phase examined                                                                                                                 |
| ST.PH. = abbreviation of stationary phase                                                                                                                |
| ST\$(j)=name of the jin basic stationary phase used. It should be noted that the basic stationary                                                        |
| phases are as follow: Zerolane, squalane and OV-101 with retention polarity 7.17 at 120.0 [°C]                                                           |
| SC(1,1), $SC(1,2)$ , $SC(1,3)$ , $SC(1,4)$ and $SC(1,5)$ = molecular structural coefficient calculated of first 5                                        |
| McReynolds standards on the Zerolane at TC column temperature [ $^{\circ}$ C] [ln (cm $^{3}/g$ )]                                                        |
| SC(2,1), $SC(2,2)$ , $SC(2,3)$ , $SC(2,4)$ and $SC(2,5)$ = molecular structural coefficient calculated of first 5                                        |
| McReynolds standards on a squalane stationary phase at TC column temperature [°C] [ln (cm <sup>3</sup> /g)]                                              |
| SC(3,1), $SC(3,2)$ , $SC(3,3)$ , $SC(3,4)$ and $SC(3,5)$ = molecular structural coefficient calculated of first 5                                        |
| McReynolds standards on an OV-101 stationary phase with 7.17 retention polarity at TC column                                                             |
| temperature [°C] [ln (cm <sup>-</sup> /g)]                                                                                                               |
| S1,S2,S3,S4 and $S5$ = molecular structural coefficient calculated of first 5 McReynolds standards on                                                    |
| stationary phase used at TC column temperature [°C] $[\ln (cm^3/g)]$                                                                                     |
| T = column temperature [°K]                                                                                                                              |

N\$=name of the compound examined

TC = column temperature [°C] $t_{\rm p}$  = retention time [min]  $t_a = dead (hold-up) time [min]$ V1,V2,V3,V4 and V5=specific retention volume calculated of first 5 McReynolds standards  $[cm^3/g]$ on stationary phase used at TC column temperature [°C] VG(1,1),VG(1,2),VG(1,3),VG(1,4) and VG(1,5)=symbol of specific retention volume of first 5 McReynolds standards [cm<sup>3</sup>/g] on the Zerolane phase used at TC column temperature [°C] V8 = specific retention volume of *n*-octane [cm<sup>3</sup>/g] on stationary phase used at TC column temperature [°C] V8(1)=symbol of *n*-octane's specific retention volume  $[cm^3/g]$  on the Zerolane at TC column temperature [°C] V8(2) = symbol of *n*-octane's specific retention volume, [ln (cm<sup>3</sup>/g)], on a squalane at TC column temperature [°C] V8(3)=symbol of *n*-octane's specific retention volume  $[cm^3/g]$  at TC column temperature  $[^{\circ}C]$  on an OV-101 stationary phase with retention polarity 7.17 at 120.0 [°C] VV=symbol of 1,4-dioxane's specific retention volume [cm<sup>3</sup>/g] on the Zerolane at TC column temperature [°C] W=serial number X1,X2,X3,X4 and X5=substance specific factor of first 5 McReynolds standards [dimensionless] X6=retention index at TC [°C] column temperature of the substance studied on an OV-101 stationary phase with 7.17 retention polarity at 120.0 [°C] XX = difference of retention indices measured between stationary phases used and squalane of the substance examined at TC column temperature [°C] [dimensionless] Y1,Y2,Y3,Y4 and Y5=relative retention index of first 5 McReynolds standards measured on a stationary phase used at TC column temperature [°C] to an OV-101 stationary phase with 7.17 retention polarity at 120.0 [°C] [dimensionless] Z1,Z2,Z3,Z4 and Z5=relative retention index of first 5 McReynolds standards predicted on the Zerolane stationary phase at TC column temperature [°C] to an OV-101 stationary phase with 7.17 retention polarity at 120.0 [°C] [dimensionless]

ZZ=difference of measured and calculated retention indices of compound examined

Table 9

The gas-liquid chromatographic parameters of the essential experiment series

Gas chromatographs: different types of Carlo Erba and Hewlett-Packard Detectors: flame ionization detectors Attenuation:  $10^{-9} - 10^{-10}$  [A] Introduction of samples: 1.0 [mm<sup>3</sup>] from mixture by Hamilton or SGE syringes Columns: different coated and wall-coated open tubular (WCOT) Stationary phases: cited in this paper Ratio of phases according to WCOT: 1:75-1:100 Carrier gas: nitrogen, argon and helium, respectively. It should be noted that the values of Kováts coefficient, molecular stuctural coefficient, specific retention volume, net retention volume, retention index, as well as, polarities are independent of the quality of the carrier gas used [39,40]. Inlet pressure: 2.14-2.95 [kp/cm<sup>2</sup>] Flow-rate: 0.36-1.3 [cm<sup>3</sup>/min] on WCOT columns and 19-25 [cm<sup>3</sup>/min] on coated columns Dead (hold-up) time: 3.567-4.386 [min] on WCOT columns and 0.3-0.5 [min] on coated columns Column temperature: 60.0-150.0±0.1 [°C] Temperature of evaporator: 200.0-250±1 [°C] Temperature of detector: 230.0-250±1 [°C]

#### References

- [1] A.T. James, A.J.P. Martin, Biochem. J. 50 (1952) 679.
- [2] Varian, GC Applications Library 1959–1975, Varian, Palo Alto, CA, 1975.
- [3] M.V. Budahegyi, E.R. Lombosi, T.S. Lombosi et al., J. Chromatogr. 271 (1983) 307.
- [4] G. Tarján, S. Nyiredy, M. Győr et al., J. Chromatogr. 472 (1989) 1.
- [5] M.B. Evans, J.K. Haken, J. Chromatogr. 271 (1983) 217.
- [6] V. Pacáková, L. Feltl, Chromatographic Retention Indices, Ellis Horwood, Chichester, 1992.
- [7] J. Takács, C. Szita, G. Tarján, J. Chromatogr. 56 (1971) 1.
- [8] J.M. Takács, J. Chromatogr. Sci. 11 (1973) 210.
- [9] L. Rohrschneider, J. Chromatogr. 22 (1966) 6.
- [10] W.O. McReynolds, J. Chromatogr. Sci. 8 (1970) 685.
- [11] B.R. Kersten, C.F. Poole, J. Chromatogr. 452 (1988) 191.
- [12] R.M. Pomaville, S.K. Poole, L.D.J. Davis, C.F. Poole, J. Chromatogr. 438 (1988) 1.
- [13] S.K. Poole, B.R. Kersten, R.M.S. Pomaville, C.F. Poole, LC·GC 6 (1988) 400.
- [14] E.F. Sanchez, A.F. Torres, J.A.G. Dominguez, J.M. Santiuste, E.P. Rimada, J. Chromatogr. 457 (1988) 55.
- [15] M.H. Abraham, G.S. Whiting, R.M. Doherty, W.J. Shuely, J. Chromatogr. 518 (1990) 329.
- [16] M.H. Abraham, J.A. Haftvan, I. Hamerton, C.F. Poole, T.O. Kollie, J. Chromatogr. 646 (1993) 351.
- [17] J. Li, Y. Zhang, A.J. Dallas, P.W. Carr, J. Chromatogr. 550 (1991) 101.
- [18] J. Li, P.W. Carr, Anal. Chem. 65 (1993) 1443.
- [19] P. Laffort, P. Callegari, M. Devos, Poster on Theoretical Advancement in Chromatography, Ferrara, 1991.
- [20] P. Laffort, C.R. Acad. Sci. Paris 316 (1993) 105.
- [21] M.H. Abraham, G.S. Whiting, J. Chromatogr. 594 (1992) 229.
- [22] P. Souter, J. Chromatogr. Sci. 12 (1974) 418.
- [23] P. Souter, J. Chromatogr. Sci. 12 (1974) 424.
- [24] J.M. Takács, J. Chromatogr. Sci. 12 (1974) 421.
- [25] V. Tekler, G. Tarján, J.M. Takács, J. Chromatogr. 406 (1987) 131.
- [26] E. Bojti, M. Mihók, I. Borbély, J. Bárkai, J.M. Takács, J. Chromatogr. 119 (1976) 321.
- [27] T. Lombosi, T. Bernát, T. Lombosi, Magy. Kém. Folyóirat 103 (1997) 66 (in Hungarian)

- [28] V. Tekler, J.M. Takács, J. Chromatogr. 202 (1980) 179.
- [29] J.M. Santiuste, Chromatographia 40 (1995) 28.
- [30] E. Kováts, Anal. Chim. Acta 41 (1958) 1915.
- [31] J. Takács, Z. Szentirmai, E.B. Molnár, D. Králik, J. Chromatogr. 65 (1972) 121.
- [32] C.F. Poole: Contribution to the definition equation of the substance specific factors in GLC, (private communication), 1997.
- [33] G. Tarján, Á. Kiss, G. Kocsis, S. Mészáros, J.M. Takács, J. Chromatogr. 119 (1976) 327.
- [34] J.M. Santiuste, Chromatographia 38 (1994) 701.
- [35] J.M. Takács, J. Chromatogr. Sci. 29 (1991) 382.
- [36] E.B. Lorenz, J.M. Takács, in: J.M. Takács (Ed.), Twenty-Fifth Anniversary of the Foundation of Gas Chromatographic Research Group for Study of the Retention Index Systems, GRG, Budapest, 1996, Chapter 12, p.1.
- [37] J.M. Santiuste, in: J.M. Takács (Ed.), Twenty-Fifth Anniversary of the Foundation of Gas Chromatographic Research Group for Study of the Retention Index Systems, GRG, Budapest, 1996, Chapter 1, p. 1.
- [38] L.S. Ettre, Chromatographia 6 (1973) 489.
- [39] A.B. Littlewood, C.S.G. Phillips, D.T. Price, J. Chem. Soc., (1955) 1840.
- [40] D.H. Everett, B.W. Ganey, C.L. Young, Trans. Faraday Soc. 64 (1968) 2667.
- [41] J.R. Conder, in: J.H. Purnell (Ed.), Progress in Gas Chromatography, Wiley, New York, 1968, p. 247.
- [42] G. Schay, Theoretical Basis of GLC, Deutscher Verlag der Wissenschaften, Berlin, 1960 (in German).
- [43] Q. Dai, R. Lebrón-Aguilar, E. Fernández-Sánchez, J.A. García-Dominguez, J.E. Quintanilla-López, J. High Resolut. Chromatogr. 16 (1993) 721.
- [44] K.S. Reddy, R. Cloux, E.S. Kováts, J. Chromatogr. A 704 (1995) 387.
- [45] K.S. Reddy, R. Cloux, E. Kováts, J. Chromatogr. A 673 (1994) 181.
- [46] K.S. Reddy, J.C. Dutoit, E.S. Kováts, J. Chromatogr. 609 (1992) 229.
- [47] G. Défayes, A. Dallos, E.S. Kováts, J. Chromatogr. A 699 (1992) 131.
- [48] F.J. Van Lenten, J.E. Conaway, L.B. Rogers, Sep. Sci. 12 (1977) 1.
- [49] J.M. Santiuste, Ann. Quím. 90 (1994) 315.